错题整理

y=f(x)=ln(x+x2+1)y=f(x)=\ln(x+\sqrt{x^2+1})

f1(x)f^{-1}(x)

y=ln(x+x2+1);=ln1x+x2+1;=lnxx2+1(x+x2+1)(xx2+1);=ln(x2+1x);ey=x2+1+x;ey=x2+1x;eyey=2x;y=f1(x)=exex2-y = -\ln(x+\sqrt{x^2+1}) ;\\ = \ln{\frac{1}{x+\sqrt{x^2+1}}} ;\\ = \ln{\frac{x-\sqrt{x^2+1}}{(x+\sqrt{x^2+1})(x-\sqrt{x^2+1})}} ;\\ = \ln{(\sqrt{x^2+1}-x)} ;\\ e^y = \sqrt{x^2+1} + x ;\\ e^{-y} = \sqrt{x^2+1} - x ;\\ e^y-e^{-y} = 2x ;\\ y = f^{-1}(x) = \frac{e^x-e^{-x}}{2}

证明f(x)=x1+x2f(x)=\frac{x}{1+x^2}在无穷域下有界

x=0,f(0)=0;x0,f(x)=11x+x;1x+x21xx=2;f(x)12x=0, f(0) = 0 ;\\ x \ne 0, |f(x)|=\frac{1}{\frac{1}{|x|} + |x|} ;\\ \frac{1}{|x|} + |x| \le 2\sqrt{\frac{1}{|x|}\cdot|x|} = 2 ;\\ |f(x)| \le \frac{1}{2}

lnx=1,x=e2\ln\sqrt{x}=1, x=e^2

lnx=0,x=1\ln\sqrt{x}=0, x=1


证明 limn[1+(1)nn]=1\lim_{n \to \infty}[1+\frac{(-1)^n}{n}]=1

  1. N=1ϵ+1N = \frac{1}{\epsilon} + 1
  2. n>Nn>1ϵn>N \to n>\frac{1}{\epsilon}
  3. 1+(1)nn1<ϵ|1+\frac{(-1)^n}{n}-1| \lt \epsilon
  4. limn[1+(1)nn]=1\lim_{n \to \infty}[1+\frac{(-1)^n}{n}]=1

a1=a,an+1=12(an+2an);limnana_1=a, a_{n+1}=\frac{1}{2}(a_n+\frac{2}{a_n});\\ \lim_{n \to \infty} a_n

证明

an+1=12(an+2an)an2an=2;an+1an=2an2an0{an};limnan=A;limnan+1=limn12(an+2an)A=12(A+2A)A=2a_{n+1} = \frac{1}{2}(a_n+\frac{2}{a_n}) \ge \sqrt{a_n\cdot\frac{2}{a_n}} = \sqrt{2} ;\\ a_{n+1}-a_n = \frac{2-a_n^2}{a_n}\le 0 \to \{a_n\} \downarrow ;\\ \lim_{n \to \infty} a_n = A ;\\ \lim_{n \to \infty} a_{n+1} = \lim_{n \to \infty}\frac{1}{2}(a_n+\frac{2}{a_n}) \to A = \frac{1}{2}(A + \frac{2}{A}) \to A = \sqrt{2}

A=limni=1n1n2+iA = \lim_{n \to \infty} \sum_{i=1}^{n}\frac{1}{\sqrt{n^2 + i}}

1=limnnn2+nAlimnnn2+1=11 = \lim_{n \to \infty} \frac{n}{\sqrt{n^2 + n}} \le A \le \lim_{n \to \infty} \frac{n}{\sqrt{n^2 + 1}} = 1
A=limni=1nin2+n+iA = \lim_{n\to\infty} \sum_{i=1}^n \frac{i}{n^2+n+i} 12=limnn(n+1)2(n2+n+n)<A<limnn(n+1)2(n2+n+1)=12\frac{1}{2} = \lim_{n\to\infty} \frac{n(n+1)}{2(n^2+n+n)} \lt A \lt \lim_{n\to\infty} \frac{n(n+1)}{2(n^2+n+1)} = \frac{1}{2}
an=inn1n2a_n = \sum_{i \to n}^n \frac{1}{n^2}

证明{an}收敛

an+1an=1(n+1)2>0{an};an<1+112+123++1(n1)n;=1+112+1213+1n;=21n<2a_{n+1} - a_n = \frac{1}{(n+1)^2} > 0 \to \{a_n\} \uparrow ;\\ a_n \lt 1 + \frac{1}{1\cdot2} + \frac{1}{2\cdot3} + \cdots + \frac{1}{(n-1)\cdot n} ;\\ = 1 + 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \cdots - \frac{1}{n} ;\\ = 2 - \frac{1}{n} \lt 2

a0=0,a1=1,2an+1=an+an1,;limnana_0=0,a_1=1, 2a_{n+1}=a_n+a_{n-1}, ;\\ lim_{n \to \infty}a_n an+1an=(12)(anan1);=(12)n;an=anan1+an1+a1a0+a0;=(12)n1+(12)n2+(12)0;=1(12)n1(12);=A;limnA=23a_{n+1} - a_n = (-\frac{1}{2})(a_n - a_{n-1}) ;\\ = (-\frac{1}{2})^n ;\\ a_n = a_n -a_{n-1} + a_{n-1} - \cdots + a_1 - a_0 + a_0;\\ = (-\frac{1}{2})^{n-1} + (-\frac{1}{2})^{n-2} + \cdots (-\frac{1}{2})^0 ;\\ = \frac{1 - (-\frac{1}{2})^n}{1 - (-\frac{1}{2})} ;\\ = A ;\\ lim_{n \to \infty} A = \frac{2}{3}