常微分方程

形如y+p(x)y=q(x)y'+p(x)y=q(x)的通解公式

y=ep(x)dx[ep(x)dxq(x)dx+C]y = e^{ - \int p(x) \mathrm{d}x }[ \int e^{ \int p(x) \mathrm{d} x } \cdot q(x) \mathrm{d} x + C ]

形如y+p(x)y=q(x)yny'+p(x)y=q(x)y^n的通解

伯努利方程

  1. 同时除以yny^n
  2. z=y1nz=y^{1-n}11ndzdx+p(x)z=q(x)\frac{1}{1-n}\cdot\frac{\mathrm{d}z}{\mathrm{d}x}+p(x)z=q(x)

求解y=f(x,y)y''=f(x,y')

y=p(x)y'=p(x)


求解y=f(y,y)y''=f(y, y')

p=y,y=dpdypp=y', y''=\frac{\mathrm{d}p}{\mathrm{d}y}\cdot p


求解y+py+qy=0y''+py'+qy=0

求特征方程λ2+pλ+q=0\lambda^2+p\lambda+q=0


求解y+py+qy=Pn(x)eαxy''+py'+qy=P_n(x)e^{\alpha x}


求解y+py+qy=eαx[Pm(x)cosβx+Pn(x)sinβx]y''+py'+qy=e^{\alpha x}[P_m(x)\cos\beta x + P_n(x)\sin\beta x]