GrowGen | 整
Home
Blog
Archive
Search...
⌘
+
K
book
math
线性代数
矩阵
J.Gong
2021-08-19
1min
矩阵
∣
k
A
∣
=
k
n
∣
A
∣
|kA| = k^n|A|
∣
k
A
∣
=
k
n
∣
A
∣
(
k
A
)
T
=
k
A
T
(kA)^T = kA^T
(
k
A
)
T
=
k
A
T
(
A
+
B
)
T
=
A
T
+
B
T
(A+B)^T = A^T + B^T
(
A
+
B
)
T
=
A
T
+
B
T
A
A
∗
=
A
∗
A
AA^*=A^*A
A
A
∗
=
A
∗
A
A
∗
=
∣
A
∣
A
−
1
A^* = |A|A^{-1}
A
∗
=
∣
A
∣
A
−
1
A
A
∗
=
∣
A
∣
E
AA^*=|A|E
A
A
∗
=
∣
A
∣
E
∣
A
∗
∣
=
∣
A
∣
n
−
1
|A^*|=|A|^{n-1}
∣
A
∗
∣
=
∣
A
∣
n
−
1
A
−
1
=
1
∣
A
∣
A
∗
A^{-1}=\frac{1}{|A|}A^*
A
−
1
=
∣
A
∣
1
A
∗
A
=
∣
A
∣
(
A
∗
)
−
1
A=|A|(A^*)^{-1}
A
=
∣
A
∣
(
A
∗
)
−
1
(
k
A
)
(
k
A
)
∗
=
∣
k
A
∣
E
(kA)(kA)^*=|kA|E
(
k
A
)
(
k
A
)
∗
=
∣
k
A
∣
E
A
T
(
A
T
)
∗
=
∣
A
T
∣
E
A^T(A^T)^*=|A^T|E
A
T
(
A
T
)
∗
=
∣
A
T
∣
E
A
−
1
(
A
−
1
)
∗
=
∣
A
−
1
∣
E
A^{-1}(A^{-1})^* = |A^{-1}|E
A
−
1
(
A
−
1
)
∗
=
∣
A
−
1
∣
E
A
∗
(
A
∗
)
∗
=
∣
A
∗
∣
E
A^*(A^*)^*=|A^*|E
A
∗
(
A
∗
)
∗
=
∣
A
∗
∣
E
(
A
T
)
∗
=
(
A
∗
)
T
(A^T)^*=(A^*)^T
(
A
T
)
∗
=
(
A
∗
)
T
(
A
−
1
)
∗
=
(
A
∗
)
−
1
(A^{-1})^*=(A^*)^{-1}
(
A
−
1
)
∗
=
(
A
∗
)
−
1
(
A
B
)
∗
=
B
∗
A
∗
(AB)^*=B^*A^*
(
A
B
)
∗
=
B
∗
A
∗
(
A
∗
)
∗
=
∣
A
∣
n
−
2
A
(A^*)^*=|A|^{n-2}A
(
A
∗
)
∗
=
∣
A
∣
n
−
2
A
∣
∣
A
∣
∣
=
∣
A
∣
||A||=|A|
∣∣
A
∣∣
=
∣
A
∣
(
A
T
)
T
=
A
(A^T)^T=A
(
A
T
)
T
=
A
(
A
−
1
)
−
1
=
A
(A^{-1})^{-1}=A
(
A
−
1
)
−
1
=
A
(
A
∗
)
∗
=
∣
A
∣
n
−
2
A
(A^*)^*=|A|^{n-2}A
(
A
∗
)
∗
=
∣
A
∣
n
−
2
A
(
k
A
)
−
1
=
1
k
A
−
1
(kA)^{-1}=\frac{1}{k}A^{-1}
(
k
A
)
−
1
=
k
1
A
−
1
(
k
A
)
∗
=
k
n
−
1
A
∗
(kA)^*=k^{n-1}A^*
(
k
A
)
∗
=
k
n
−
1
A
∗
∣
A
B
∣
=
∣
A
∣
∣
B
∣
|AB|=|A||B|
∣
A
B
∣
=
∣
A
∣∣
B
∣
(
A
B
)
T
=
B
T
A
T
(AB)^T=B^TA^T
(
A
B
)
T
=
B
T
A
T
(
A
B
)
−
1
=
B
−
1
A
−
1
(AB)^{-1}=B^{-1}A^{-1}
(
A
B
)
−
1
=
B
−
1
A
−
1
(
A
B
)
∗
=
B
∗
A
∗
(AB)^*=B^*A^*
(
A
B
)
∗
=
B
∗
A
∗
(
(
A
−
1
)
)
T
=
(
A
T
)
−
1
((A^{-1}))^T=(A^T)^{-1}
((
A
−
1
)
)
T
=
(
A
T
)
−
1
(
A
−
1
)
∗
=
(
A
∗
)
−
1
(A^{-1})^*=(A^*)^{-1}
(
A
−
1
)
∗
=
(
A
∗
)
−
1
(
A
∗
)
T
=
(
A
T
)
∗
(A^*)^T=(A^T)^*
(
A
∗
)
T
=
(
A
T
)
∗
∣
A
T
∣
=
∣
A
∣
|A^T|=|A|
∣
A
T
∣
=
∣
A
∣
∣
A
−
1
∣
=
∣
A
∣
−
1
|A^{-1}|=|A|^{-1}
∣
A
−
1
∣
=
∣
A
∣
−
1
∣
A
∗
∣
=
∣
A
∣
n
−
1
|A^*|=|A|^{n-1}
∣
A
∗
∣
=
∣
A
∣
n
−
1
∣
A
+
B
∣
≠
∣
A
∣
+
∣
B
∣
|A+B| \ne |A| + |B|
∣
A
+
B
∣
=
∣
A
∣
+
∣
B
∣
(
A
+
B
)
T
=
A
T
+
B
T
(A+B)^T=A^T+B^T
(
A
+
B
)
T
=
A
T
+
B
T
A
=
(
B
O
D
C
)
,
A
−
1
=
(
B
−
1
O
−
C
D
B
−
1
C
−
1
)
A=\begin{pmatrix} B & O \\ D & C \\ \end{pmatrix} , A^{-1}= \begin{pmatrix} B^{-1} & O \\ -CDB^{-1} & C^{-1} \\ \end{pmatrix}
A
=
(
B
D
O
C
)
,
A
−
1
=
(
B
−
1
−
C
D
B
−
1
O
C
−
1
)
A
=
(
B
D
O
C
)
,
A
−
1
=
(
B
−
1
−
B
−
1
D
C
−
1
O
C
−
1
)
A=\begin{pmatrix} B & D \\ O & C \\ \end{pmatrix} , A^{-1}= \begin{pmatrix} B^{-1} & -B^{-1}DC^{-1} \\ O & C^{-1} \\ \end{pmatrix}
A
=
(
B
O
D
C
)
,
A
−
1
=
(
B
−
1
O
−
B
−
1
D
C
−
1
C
−
1
)
A
=
(
O
B
C
D
)
,
A
−
1
=
(
−
C
−
1
D
B
−
1
c
−
1
B
−
1
O
)
A=\begin{pmatrix} O & B \\ C & D \\ \end{pmatrix} , A^{-1}= \begin{pmatrix} -C^{-1}DB^{-1} & c^{-1} \\ B^{-1} & O \\ \end{pmatrix}
A
=
(
O
C
B
D
)
,
A
−
1
=
(
−
C
−
1
D
B
−
1
B
−
1
c
−
1
O
)
A
=
(
D
B
C
O
)
,
A
−
1
=
(
O
c
−
1
B
−
1
−
B
−
1
D
C
−
1
)
A=\begin{pmatrix} D & B \\ C & O \\ \end{pmatrix} , A^{-1}= \begin{pmatrix} O & c^{-1} \\ B^{-1} & -B^{-1}DC^{-1} \\ \end{pmatrix}
A
=
(
D
C
B
O
)
,
A
−
1
=
(
O
B
−
1
c
−
1
−
B
−
1
D
C
−
1
)
0
≤
r
(
A
)
≤
m
i
n
{
m
,
n
}
0 \le r(A) \le \mathrm{min}\{m,n\}
0
≤
r
(
A
)
≤
min
{
m
,
n
}
r
(
A
B
)
=
m
i
n
{
r
(
A
)
,
r
(
B
)
}
r(AB) = \mathrm{min} \{r(A),r(B)\}
r
(
A
B
)
=
min
{
r
(
A
)
,
r
(
B
)}
r
(
A
+
B
)
≤
r
(
A
)
+
r
(
B
)
r(A+B) \le r(A) + r(B)
r
(
A
+
B
)
≤
r
(
A
)
+
r
(
B
)
r
(
A
∗
)
=
{
n
,
r
(
A
)
=
n
1
,
r
(
A
)
=
n
−
1
0
,
r
(
A
)
<
n
−
1
r(A^*)=\begin{cases} n, r(A)=n \\ 1, r(A)=n-1 \\ 0, r(A) \lt n-1 \\ \end{cases}
r
(
A
∗
)
=
⎩
⎨
⎧
n
,
r
(
A
)
=
n
1
,
r
(
A
)
=
n
−
1
0
,
r
(
A
)
<
n
−
1
Headings
矩阵
J.Gong
关注作者
相关文章
Tags
book
math
线性代数