GrowGen
给我
整
Home
Blog
Lab
World
Archive
Search...
⌘
+
K
2021-08-20
特征值与特征向量
book
线性代数
#math
Headings
特征值与特征向量
Tags
book
math
线性代数
book
math
线性代数
特征值与特征向量
J.Gong
2021-08-20
0.46min
特征值与特征向量
f
(
λ
)
=
a
k
λ
k
+
⋯
+
a
1
λ
+
a
0
=
0
f(\lambda)=a_k\lambda^k + \cdots + a_1\lambda + a_0 = 0
f
(
λ
)
=
a
k
λ
k
+
⋯
+
a
1
λ
+
a
0
=
0
若
a
0
=
0
a_0=0
a
0
=
0
则 0 是
f
(
λ
)
f(\lambda)
f
(
λ
)
的根
若
a
k
+
a
k
−
1
+
⋯
+
a
1
+
a
0
=
0
a_k+a_{k-1}+\cdots+a_1+a_0=0
a
k
+
a
k
−
1
+
⋯
+
a
1
+
a
0
=
0
则 1 是
f
(
λ
)
f(\lambda)
f
(
λ
)
的根
若偶次项系数和等于奇次项系数之和则-1 是
f
(
λ
)
f(\lambda)
f
(
λ
)
的根
a
i
a_i
a
i
都是整数,则
f
(
λ
)
f(\lambda)
f
(
λ
)
的有理根都是整数且均是
a
0
a_0
a
0
的因子
(
λ
E
−
A
)
ξ
=
0
(\lambda E- A)\xi = 0
(
λ
E
−
A
)
ξ
=
0
(
k
λ
E
−
k
A
)
ξ
=
0
(k\lambda E - kA)\xi = 0
(
kλ
E
−
k
A
)
ξ
=
0
(
λ
k
E
−
A
k
)
ξ
=
0
(\lambda^k E - A^k)\xi = 0
(
λ
k
E
−
A
k
)
ξ
=
0
(
f
(
λ
)
E
−
f
(
A
)
)
ξ
=
0
(f(\lambda) E - f(A))\xi = 0
(
f
(
λ
)
E
−
f
(
A
))
ξ
=
0
(
E
λ
−
A
−
1
)
ξ
=
0
(\frac{E}{\lambda} - A^{-1})\xi = 0
(
λ
E
−
A
−
1
)
ξ
=
0
(
∣
A
∣
λ
E
−
A
∗
)
ξ
=
0
(\frac{|A|}{\lambda}E - A^*)\xi = 0
(
λ
∣
A
∣
E
−
A
∗
)
ξ
=
0
(
λ
E
−
P
−
1
A
P
)
P
−
1
ξ
=
0
(\lambda E - P^{-1}AP)P^{-1}\xi=0
(
λ
E
−
P
−
1
A
P
)
P
−
1
ξ
=
0