2021-08-20

特征值与特征向量

book
线性代数
#math

特征值与特征向量

J.Gong

2021-08-20

0.46min

特征值与特征向量

f(λ)=akλk++a1λ+a0=0f(\lambda)=a_k\lambda^k + \cdots + a_1\lambda + a_0 = 0
  • a0=0a_0=0则 0 是f(λ)f(\lambda)的根
  • ak+ak1++a1+a0=0a_k+a_{k-1}+\cdots+a_1+a_0=0则 1 是f(λ)f(\lambda)的根
  • 若偶次项系数和等于奇次项系数之和则-1 是f(λ)f(\lambda)的根
  • aia_i都是整数,则f(λ)f(\lambda)的有理根都是整数且均是a0a_0的因子
(λEA)ξ=0(\lambda E- A)\xi = 0 (kλEkA)ξ=0(k\lambda E - kA)\xi = 0 (λkEAk)ξ=0(\lambda^k E - A^k)\xi = 0 (f(λ)Ef(A))ξ=0(f(\lambda) E - f(A))\xi = 0 (EλA1)ξ=0(\frac{E}{\lambda} - A^{-1})\xi = 0 (AλEA)ξ=0(\frac{|A|}{\lambda}E - A^*)\xi = 0 (λEP1AP)P1ξ=0(\lambda E - P^{-1}AP)P^{-1}\xi=0

© 2025 All rights reserved..

This website uses Astro.build, Mantine and React Bits | deployed on Vercel